Themes in ggplot2

You can customize the appearance of your plots made with ggplot2 using themes created by other users. Click on the buttons of each section to visualize each theme and its corresponding code.

Note that you can override theme elements making use of the theme function, like the background color, the grid lines or the margins, among others.

In-built themes

The ggplot2 package comes with eight different themes. By default it uses the theme named theme_grey (theme_gray), so you don’t really need to specify it.

Choose a theme

Note that there is an additional theme named theme_test to conduct visual unit tests by advanced users.

Default ggplot2 theme

library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_grey() +  # Default
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_bw() +
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_linedraw() +
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_light() +
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_dark() +
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_minimal() +
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_classic() +
  theme(legend.position = "top")
library(ggplot2)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_void() +
  theme(legend.position = "top")

ggthemes package

library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_base() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_calc() +
  scale_fill_calc() + 
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_clean() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_economist() +
  scale_fill_economist() + 
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_excel() +
  scale_fill_excel() + 
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_excel_new() +
  scale_fill_excel_new() + 
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_few() +
  scale_fill_few() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_fivethirtyeight() +
  scale_fill_fivethirtyeight() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_foundation() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_gdocs() +
  scale_fill_gdocs() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_hc() +
  scale_fill_hc() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_igray() +
  theme(legend.position = "top")
library(maps)
library(ggplot2)
library(ggthemes)

us <- fortify(map_data("state"), region = "region")

ggplot(us, aes(x = long, y = lat)) + 
  geom_map(map = us,
           aes(fill = region,
               map_id = region, group = group),
           color = "black", size = 0.1) +
       guides(fill = FALSE) + 
  theme_map() # Theme for maps
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_pander() +
  scale_fill_pander() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_par() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_solarized() +
  scale_fill_solarized() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_solid() +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme_stata() +
  scale_fill_stata() +
  theme(legend.position = "top")

The ggthemes package contains several very popular themes. Some of them also come with their corresponding color scales. Use the scales properly according to your data.

hrbrthemes package

hrbrthemes provides “typography-centric themes and theme components for ggplot2”. The available themes are listed below, but you can also check the available scales, palettes, fonts and utilities.

library(ggplot2)
library(hrbrthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ipsum() + # Arial Narrow
  scale_fill_ipsum() +
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ipsum_es() + # Econ Sans Condensed
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ipsum_rc() + # Roboto Condensed
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ipsum_ps() + # IBM Plex Sans font
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ipsum_pub() + # Public Sans
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ipsum_tw() + # Titilium Web
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)
# import_roboto_condensed()
# extrafont::loadfonts(device="win")

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_modern_rc() + # Roboto Condensed dark theme
  theme(legend.position = "top")
library(ggplot2)
library(hrbrthemes)
# import_roboto_condensed()
# extrafont::loadfonts(device="win")

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) + 
  ggtitle("Plot title") +
  theme_ft_rc() + # Dark theme based on FT’s dark theme
  scale_fill_ft() + 
  theme(legend.position = "top")

ggthemr package

library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("flat")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("flat dark")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("camouflage")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("carrot")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("chalk")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("copper")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("dust")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("earth")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("freshe")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("grape")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("grass")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("greyscale")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("light")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("lilac")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("pale")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("sea")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("sky")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")
library(ggplot2)
library(ggthemr)

cyls <- as.factor(mtcars$cyl)

ggthemr("solarized")

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")

Note that you will need to call ggthemr_reset() to reset to the default ggplot2 theme.

ggtech package

library(ggplot2)
library(ggtech)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  ggtitle("Title of the plot") + 
  theme_tech(theme = "airbnb") +
  scale_fill_tech(theme = "airbnb") +
  theme(legend.position = "top")
library(ggplot2)
library(ggtech)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  ggtitle("Title of the plot") + 
  theme_tech(theme = "etsy") + 
  scale_fill_tech(theme = "etsy") +
  theme(legend.position = "top")
library(ggplot2)
library(ggtech)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  ggtitle("Title of the plot") + 
  theme_tech(theme = "facebook") + 
  scale_fill_tech(theme = "facebook") +
  theme(legend.position = "top")
library(ggplot2)
library(ggtech)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  ggtitle("Title of the plot") + 
  theme_tech(theme = "google") + 
  scale_fill_tech(theme = "google") +
  theme(legend.position = "top")
library(ggplot2)
library(ggtech)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  ggtitle("Title of the plot") + 
  theme_tech(theme = "twitter") + 
  scale_fill_tech(theme = "twitter") +
  theme(legend.position = "top")
library(ggplot2)
library(ggtech)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  ggtitle("Title of the plot") + 
  theme_airbnb_fancy() + 
  scale_fill_tech(theme = "airbnb") +
  theme(legend.position = "top")

ggdark package

library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_gray() +  # Default
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_bw() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_linedraw() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_light() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_dark() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_minimal() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_classic() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_theme_void() +
  theme(legend.position = "top")
library(ggplot2)
library(ggdark)
library(ggthemes)

cyls <- as.factor(mtcars$cyl)

invert_geom_defaults()

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  dark_mode(theme_solarized()) +
  scale_fill_solarized() +
  theme(legend.position = "top")

invert_geom_defaults()

ggdark provides the dark mode themes of the in-built ggplot2 themes. In addition, the package can convert any theme into a dark theme making use of the dark_mode function.

Set an active theme

The theme_set function can be used to set a theme globally. In the following example we are setting the in-built theme_dark to all the generated plots. Then, you can you back to the default theme as follows.

library(ggplot2)

# Global theme
old <- theme_set(theme_dark())

cyls <- as.factor(mtcars$cyl)

ggplot(mtcars, aes(x = mpg, fill = cyls)) +
  geom_density(alpha = 0.7) +
  theme(legend.position = "top")

# Reset to default
theme_set(old)

Set an active theme in ggplot2 with the theme_set function

Fundamentals of Data Visualization

A Primer on Making Informative and Compelling Figures

Buy on Amazon
Better Data Visualizations

A Guide for Scholars, Researchers, and Wonks

Buy on Amazon
ggplot2

Elegant Graphics for Data Analysis

Buy on Amazon

See also